Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474162

RESUMO

In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.


Assuntos
Microbiota , Doença de Parkinson , Humanos , Idoso , Triptofano/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Cinurenina/metabolismo
2.
Life (Basel) ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38255742

RESUMO

Kynurenic acid is a tryptophan (Trp) metabolite formed along the kynurenine (KYN) pathway in the brain and in peripheral tissues. The disturbed formation of kynurenic acid, which targets glutamate-mediated neurotransmission, GPR35, and aryl hydrocarbon receptors of immune or redox status, was implicated in the development of neuropsychiatric and metabolic disorders among others. Kynurenic acid exerts neuroprotective and immunomodulatory effects, yet its high brain levels may negatively impact cognition. Changes in the Trp-KYN pathway are also linked with the pathogenesis of diabetes mellitus, which is an established risk factor for cardiovascular and neurological diseases or cognitive deficits. Here, the effects of metformin and glibenclamide on the brain synthesis of kynurenic acid were evaluated. Acute exposure of rat cortical slices in vitro to either of the drugs reduced kynurenic acid production de novo. Glibenclamide, but not metformin, inhibited the activity of kynurenic acid biosynthetic enzymes, kynurenine aminotransferases (KATs) I and II, in semi-purified cortical homogenates. The reduced availability of kynurenic acid may be regarded as an unwanted effect, possibly alleviating the neuroprotective action of oral hypoglycemic agents. On the other hand, considering that both compounds ameliorate the cognitive deficits in animal and human studies and that high brain kynurenic acid may hamper learning and memory, its diminished synthesis may improve cognition.

3.
Nutrients ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839388

RESUMO

Anorexia nervosa (AN), affecting up to 4% of all females and 0.3% of all males globally, remains the neuropsychiatric disorder with the highest mortality rate. However, the response to the current therapeutic options is rarely satisfactory. Considering the devastating prognosis of survival among patients with AN, further research aimed at developing novel, more effective therapies for AN is essential. Brain and serum tryptophan is mostly converted along the kynurenine pathway into multiple neuroactive derivatives, whereas only 1-2% is used for the synthesis of serotonin. This narrative review provides an update on the experimental and clinical research data concerning the metabolism of tryptophan along the kynurenine pathway in anorexia nervosa based on the available literature. We propose that in AN, lower levels of L-kynurenine and kynurenic acid result in diminished stimulation of the aryl hydrocarbon receptor, which could contribute to abnormally low body weight. The impact of L-kynurenine supplementation on anorexia in animal models and the effects of changes in tryptophan and downstream kynurenines on the clinical progression of AN require further investigation. Moreover, prospective clinical studies on larger cohorts of restrictive and binge-eating/purging AN patients and assessing the potential benefit of L-kynurenine as an add-on therapeutic agent, should follow.


Assuntos
Anorexia Nervosa , Triptofano , Animais , Anorexia Nervosa/metabolismo , Encéfalo/metabolismo , Cinurenina/metabolismo , Triptofano/metabolismo , Humanos
4.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766803

RESUMO

The tryptophan-kynurenine pathway (Trp-KYN) is the major route for tryptophan conversion in the brain and in the periphery. Kynurenines display a wide range of biological actions (which are often contrasting) such as cytotoxic/cytoprotective, oxidant/antioxidant or pro-/anti-inflammatory. The net effect depends on their local concentration, cellular environment, as well as a complex positive and negative feedback loops. The imbalance between beneficial and harmful kynurenines was implicated in the pathogenesis of various neurodegenerative disorders, psychiatric illnesses and metabolic disorders, including diabetes mellitus (DM). Despite available therapies, DM may lead to serious macro- and microvascular complications including cardio- and cerebrovascular disease, peripheral vascular disease, chronic renal disease, diabetic retinopathy, autonomic neuropathy or cognitive impairment. It is well established that low-grade inflammation, which often coincides with DM, can affect the function of KP and, conversely, that kynurenines may modulate the immune response. This review provides a detailed summary of findings concerning the status of the Trp-KYN pathway in DM based on available animal, human and microbiome studies. We highlight the importance of the molecular interplay between the deranged (functionally and qualitatively) conversion of Trp to kynurenines in the development of DM and insulin resistance. The Trp-KYN pathway emerges as a novel target in the search for preventive and therapeutic interventions in DM.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Doenças do Sistema Nervoso , Animais , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso/metabolismo , Retinopatia Diabética/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo
5.
CNS Neurosci Ther ; 28(1): 19-35, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862742

RESUMO

AIMS: The family of kynurenine pathway (KP) metabolites includes compounds produced along two arms of the path and acting in clearly opposite ways. The equilibrium between neurotoxic kynurenines, such as 3-hydroxykynurenine (3-HK) or quinolinic acid (QUIN), and neuroprotective kynurenic acid (KYNA) profoundly impacts the function and survival of neurons. This comprehensive review summarizes accumulated evidence on the role of KYNA in Alzheimer's, Parkinson's and Huntington's diseases, and discusses future directions of potential pharmacological manipulations aimed to modulate brain KYNA. DISCUSSION: The synthesis of specific KP metabolites is tightly regulated and may considerably vary under physiological and pathological conditions. Experimental data consistently imply that shift of the KP to neurotoxic branch producing 3-HK and QUIN formation, with a relative or absolute deficiency of KYNA, is an important factor contributing to neurodegeneration. Targeting specific brain regions to maintain adequate KYNA levels seems vital; however, it requires the development of precise pharmacological tools, allowing to avoid the potential cognitive adverse effects. CONCLUSIONS: Boosting KYNA levels, through interference with the KP enzymes or through application of prodrugs/analogs with high bioavailability and potency, is a promising clinical approach. The use of KYNA, alone or in combination with other compounds precisely influencing specific populations of neurons, is awaiting to become a significant therapy for neurodegenerative disorders.


Assuntos
Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ácido Cinurênico/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Doença de Huntington/metabolismo , Cinurenina/análogos & derivados , Cinurenina/toxicidade , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ácido Quinolínico/toxicidade , Transdução de Sinais/efeitos dos fármacos
6.
Nutrients ; 13(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498837

RESUMO

The link between the kynurenine pathway and immunomodulatory molecules-fractalkine and soluble intercellular adhesion molecule-1 (sICAM-1)-in anorexia nervosa (AN) remains unknown. Fractalkine, sICAM-1, tryptophan (TRP), kynurenine (KYN), neuroprotective kynurenic acid (KYNA), neurotoxic 3-OH-kynurenine (3-OH-KYN), and the expression of mRNA for kynurenine aminotransferases (KAT1-3) were studied in 20 female patients with restrictive AN (mostly drug-free, all during first episode of the disease) and in 24 controls. In AN, serum fractalkine, but not sICAM-1, KYNA, KYN, TRP or 3-OH-KYN, was higher; ratios TRP/KYN, KYN/KYNA, KYN/3-OH-KYN and KYNA/3-OH-KYN were unaltered. The expression of the gene encoding KAT3, but not of genes encoding KAT1 and KAT2 (measured in blood mononuclear cells), was higher in patients with AN. In AN, fractalkine positively correlated with TRP, while sICAM-1 was negatively associated with 3-OH-KYN and positively linked with the ratio KYN/3-OH-KYN. Furthermore, TRP and fractalkine were negatively associated with the body mass index (BMI) in AN. Expression of KAT1, KAT2 and KAT3 did not correlate with fractalkine, sICAM-1 or BMI, either in AN or control. Increased fractalkine may be an independent factor associated with the restrictive type of AN. Excessive physical activity probably underlies increased expression of KAT3 observed among enrolled patients. Further, longitudinal studies on a larger cohort of patients should be aimed to clarify the contribution of fractalkine and KAT3 to the pathogenesis of AN.


Assuntos
Anorexia Nervosa/metabolismo , Quimiocina CX3CL1/sangue , Molécula 1 de Adesão Intercelular/sangue , Cinurenina/metabolismo , Adolescente , Anorexia Nervosa/sangue , Anorexia Nervosa/imunologia , Estudos de Coortes , Feminino , Humanos , Ácido Cinurênico/sangue , Cinurenina/análogos & derivados , Cinurenina/sangue , Redes e Vias Metabólicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transaminases/genética , Triptofano/sangue , Adulto Jovem
7.
PLoS One ; 15(7): e0236413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735567

RESUMO

OBJECTIVE: Although a number of modifiable and non-modifiable causes were implicated in arterial stiffness, its pathogenesis remains elusive, and very little is known about aortic elasticity in supraventricular arrhythmias. The potential role of disturbed kynurenine metabolism in the pathogenesis of cardiovascular disease has been recently suggested. Thus, we studied the correlations of aortic stiffness and echocardiographic parameters with biochemical markers and serum level of kynurenic acid (KYNA), an endothelial derivative of tryptophan, formed along the kynurenine pathway, among patients with atrial fibrillation (AF). METHODS: Study cohort comprised 100 patients with persistent AF (43 females/57 males). Arterial stiffness index (ASI), structural and functional indices of left atrium (LA) and left ventricle (LV) were evaluated electrocardiographically. Biochemical analyses included the measurements of serum KYNA (HPLC) and of the selected markers of lipids and glucose metabolism, thyroid status, kidney function, inflammation and coagulation. RESULTS: KYNA (ß = 0.389, P = 0.029), homocysteine (ß = 0.256, P = 0.40), total cholesterol (ß = 0.814; P = 0.044), LDL (ß = 0.663; P = 0.44), TSH (ß = 0.262, P = 0.02), fT3 (ß = -0.333, P = 0.009), fT4 (ß = -0.275, P = 0.043) and creatinine (ß = 0.374, P = 0.043) were independently correlated with ASI. ASI was also independently associated with LV end-systolic diameter (LVEDd; ß = 1.751, P = 0.045), midwall fractional shortening (mFS; ß = -1.266, P = 0.007), ratio mFS/end-systolic stress (mFS/ESS; ß = -0.235, P = 0.026), LV shortening fraction (FS; ß = -0.254, P = 0.017), and LA volume index (LAVI; ß = 0.944, P = 0.022). CONCLUSIONS: In patients with AF, aortic stiffness correlated positively with KYNA, biochemical risk factors of atherosclerosis and with the indices of diastolic dysfunction of LV and LA. Revealed relationship between ASI and KYNA is an original observation, suggesting a potential role of disturbed kynurenine metabolism in the pathogenesis of arterial stiffening. KYNA, synthesis of which is influenced by homocysteine, emerges as a novel, non-classical factor associated with ASI in patients with AF.


Assuntos
Aterosclerose/sangue , Fibrilação Atrial/sangue , Biomarcadores/sangue , Ácido Cinurênico/sangue , Adulto , Aorta/diagnóstico por imagem , Aorta/patologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Fibrilação Atrial/fisiopatologia , Estudos Transversais , Ecocardiografia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Cinurenina/sangue , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Fatores de Risco , Rigidez Vascular/fisiologia
8.
Eur J Pharmacol ; 883: 173363, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663543

RESUMO

Hypothyroidism frequently manifests with altered mood and disturbed cognition. Kynurenic acid may influence cognition through antagonism of N-methyl-d-aspartate receptors (NMDA) and α7 nicotinic receptors. In here, thyroid hormones effects on kynurenic acid synthesis in rat cortical slices and on kynurenine aminotransferases (KATs) activity in semi-purified cortical homogenates were studied. Furthermore, brain kynurenic acid levels and KATs activities were evaluated in experimental model of hypothyroidism, induced by chronic administration of 0.05% propylthiouracil in drinking water. In vitro, L-thyroxine (T4) and 3,3,5-triiodothyronine (T3), reduced kynurenic acid synthesis and KATs activities (IC50 ~ 50-150 µM). In vivo, propylthiouracil increased cortical, hippocampal and striatal, but not cerebellar kynurenic acid content (192%, 142% and 124% of control, respectively), despite uniformly decreased KAT II activity and lower cortical and striatal KAT I activity. T4 application to hypothyroid animals restored kynurenic acid levels to control values and reversed enzymatic changes. T4 alone did not change brain kynurenic acid levels, despite increased activities of brain KATs. Hence, thyroid hormones modulate kynurenic acid levels by two opposing mechanisms, stimulation of KATs activity, most probably transcriptional, and direct, post-translational inhibition of KATs. Lack of correlation between KATs activity and kynurenic acid level may reflect the influence of T4 on organic anion transporter and result from impaired removal of kynurenic acid from the brain during hypothyroidism. Our data reveal novel mechanism linked with thyroid hormones deficiency and imply the potential involvement of increased brain kynurenic acid in the hypothyroidism-related cognitive disturbance.


Assuntos
Encéfalo/metabolismo , Hipotireoidismo/metabolismo , Ácido Cinurênico/metabolismo , Glândula Tireoide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/fisiopatologia , Masculino , Propiltiouracila , Ratos Wistar , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/fisiopatologia , Tiroxina/sangue , Tiroxina/farmacologia , Transaminases/metabolismo , Tri-Iodotironina/sangue , Tri-Iodotironina/farmacologia , Regulação para Cima
9.
Therap Adv Gastroenterol ; 12: 1756284819881304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31666808

RESUMO

BACKGROUND: Complex interaction of genetic defects with environmental factors seems to play a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Accumulating data implicate a potential role of disturbed tryptophan metabolism in IBD. Kynurenic acid (KYNA), a derivative of tryptophan (TRP) along the kynurenine (KYN) pathway, displays cytoprotective and immunomodulating properties, whereas 3-OH-KYN is a cytotoxic compound, generating free radicals. METHODS: The expression of lymphocytic mRNA encoding enzymes synthesizing KYNA (KAT I-III) and serum levels of TRP and its metabolites were evaluated in 55 patients with IBD, during remission or relapse [27 patients with ulcerative colitis (UC) and 28 patients with Crohn's disease (CD)] and in 50 control individuals. RESULTS: The increased expression of KAT1 and KAT3 mRNA characterized the entire cohorts of patients with UC and CD, as well as relapse-remission subsets. Expression of KAT2 mRNA was enhanced in patients with UC and in patients with CD in remission. In the entire cohorts of UC or CD, TRP levels were lower, whereas KYN, KYNA and 3-OH-KYN were not altered. When analysed in subsets of patients with UC and CD (active phase-remission), KYNA level was significantly lower during remission than relapse, yet not versus control. Functionally, in the whole groups of patients with UC or CD, the TRP/KYN ratio has been lower than control, whereas KYN/KYNA and KYNA/3-OH-KYN ratios were not altered. The ratio KYN/3-OH-KYN increased approximately two-fold among all patients with CD; furthermore, patients with CD with relapse, manifested a significantly higher KYNA/3-OH-KYN ratio than patients in remission. CONCLUSION: The presented data indicate that IBD is associated with an enhanced expression of genes encoding KYNA biosynthetic enzymes in lymphocytes; however, additional mechanisms appear to influence KYNA levels. Higher metabolic conversion of serum TRP in IBD seems to be followed by the functional shift of KYN pathway towards the arm producing KYNA during exacerbation. We propose that KYNA, possibly via interaction with aryl hydrocarbon receptor or G-protein-coupled orphan receptor 35, may serve as a counter-regulatory mechanism, decreasing cytotoxicity and inflammation in IBD. Further longitudinal studies evaluating the individual dynamics of TRP and KYN pathway in patients with IBD, as well as the nature of precise mechanisms regulating KYNA synthesis, should be helpful in better understanding the processes underlying the observed changes.

10.
J Diabetes Res ; 2019: 4957879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737685

RESUMO

Patients with diabetes mellitus (DM) type 1 and 2 are at a higher risk of cognitive decline and dementia; however, the underlying pathology is poorly understood. Kynurenic acid (KYNA), endogenous kynurenine metabolite, displays pleiotropic effects, including a blockade of glutamatergic and cholinergic receptors. Apart from well-known glial origin, kynurenic acid is robustly synthesized in the endothelium and its serum levels correlate with homocysteine, a risk factor for cognitive decline. Studies in an experimental DM model suggest that a selective, hippocampal increase of the kynurenic acid level may be an important factor contributing to diabetes-related cognitive impairment. The aim of this study was to assess the effects of chronic, four-week administration of losartan, angiotensin receptor blocker (ARB), on the brain KYNA in diabetic rats. Chromatographic and rt-PCR techniques were used to measure the level of KYNA and the expression of genes encoding kynurenine aminotransferases, KYNA biosynthetic enzymes, in the hippocampi of rats with streptozotocin-induced DM, treated with losartan. The effect of losartan on KYNA synthesis de novo was also evaluated in vitro, in brain cortical slices. The hippocampal increase of KYNA content occurred in diabetic rats treated and nontreated with insulin. Losartan did not affect KYNA levels when administered per se to naïve or diabetic animals but normalized KYNA content in diabetic rats receiving concomitantly insulin. The expression of CCBL1 (kat 1), AADAT (kat 2), and KAT3 (kat 3) genes did not differ between analyzed groups. Low concentrations of losartan did not affect KYNA production in vitro. The neuroprotective effect of ARBs in diabetic individuals may be, at least partially, linked to modulation of KYNA metabolism. The ability of ARB to modulate synthesis of KYNA in diabetic brain does not seem to result from changed expression of genes encoding KATs. We propose possible involvement of angiotensin AT4 receptors in the observed action of losartan.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Diabetes Mellitus Experimental/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Cinurênico/metabolismo , Losartan/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Diabetes Mellitus Tipo 1/metabolismo , Hipocampo/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Ratos , Ratos Wistar
11.
Pharmacol Rep ; 70(4): 737-745, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29960193

RESUMO

BACKGROUND: Accumulating data suggest an important role of disturbed kynurenine pathway and altered glutamatergic transmission in the pathogenesis of depression. In here, we focused on detailed analyses of kynurenic acid (KYNA) status in vivo following single and 14-day administration of selected tricyclic antidepressant drugs (TCAs) and serotonin selective reuptake inhibitors (SSRIs) in rats. METHODS: The effect of antidepressants on serum and brain KYNA levels, as well as on the activity of kynurenine aminotransferases (KATs I and II) and expression of Kat1 and Kat2 genes mRNA was studied in three brain regions. RESULTS: Chronic, but not acute, application of antidepressants invariably stimulated KYNA production in hippocampus (amitriptyline, imipramine, fluoxetine and citalopram) and sporadically in cortex (amitriptyline, fluoxetine), whereas no change in KYNA level was observed in striatum. Cortical and hippocampal expression of Kat1 and Kat2 genes was increased after chronic, but not single administration of all studied antidepressants. The activity of semi-purified enzymatic proteins, KAT I and II, was not paralleling changes of Kat1 and Kat2 genes. CONCLUSION: Our data indicate that prolonged administration of antidepressants targets expression of KYNA biosynthetic enzymes. Furthermore, post-translational modulation of KATs seems to play an important role in tuning of KYNA synthesis within brain structures. We suggest that consistent increase of hippocampal KYNA levels may represent hallmark of antidepressant activity. Mechanisms governing region- and drug-selective action of antidepressants require further investigations.


Assuntos
Antidepressivos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Cinurênico/metabolismo , Transaminases/genética , Regulação para Cima/efeitos dos fármacos , Animais , Córtex Cerebral , Corpo Estriado/metabolismo , Ácido Cinurênico/sangue , Masculino , Ratos , Fatores de Tempo , Transaminases/biossíntese
12.
Neurotox Res ; 32(1): 17-26, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28275903

RESUMO

Several lines of evidence suggest that up-regulation of immune response and alterations of kynurenine pathway function are involved in pathogenesis of schizophrenia. Correlations among clinical status (using PANNS, SANS and SAPS scales) and blood levels of kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and levels of selected immunoactive molecules, soluble interleukin-2 receptor (sIL-2R), interferon-α (IFN-α) and IL-4 were analyzed in 51 chronic schizophrenia patients during acute relapse, after four weeks of therapy and at remission. KYNA levels were significantly lower in comparison with controls (N=45) throughout the study, whereas 3-HK did not differ from controls at admission and during therapy, but increased at remission. The KYNA/3-HK ratio and IL-4 levels, but not sIL-2R and IFN-α levels, were consistently decreased in schizophrenia patients at all analyzed time points. KYNA level and KYNA/3-HK ratio measured at admission correlated negatively with the duration of illness, whereas 3-HK level correlated negatively with the improvement of SANS score at discharge. sIL-2R level before treatment was positively linked with number of relapses. In the subgroup of patients with poor response to pharmacotherapy, treated with clozapine later on, initial KYNA level and the ratio KYNA/3-HK correlated negatively with number of relapses. Positive association of sIL-2R level with number of relapses was also evident in this subgroup. Furthermore, among these patients, starting IFN-α level was negatively linked with the improvement of total PANSS score at discharge. Presented here data support the concept of disturbed kynurenine pathway function in schizophrenia and suggest that assessment of KYNA and 3-HK levels during acute relapse might be useful in prediction of response to antipsychotic therapy. Deficit of peripheral KYNA and higher 3-HK levels could be associated with more severe symptoms of schizophrenia. Further studies with larger samples size are needed to validate our results.


Assuntos
Interferon-alfa/sangue , Interleucina-4/sangue , Ácido Cinurênico/sangue , Cinurenina/análogos & derivados , Receptores de Interleucina-2/sangue , Esquizofrenia/sangue , Adulto , Antipsicóticos/uso terapêutico , Clozapina/uso terapêutico , Feminino , Humanos , Cinurenina/sangue , Masculino , Escalas de Graduação Psiquiátrica , Recidiva , Estudos Retrospectivos , Esquizofrenia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas , Fatores de Tempo , Regulação para Cima/fisiologia , Adulto Jovem
13.
Pol Merkur Lekarski ; 41(243): 160-164, 2016 Sep 29.
Artigo em Polonês | MEDLINE | ID: mdl-27755520

RESUMO

Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan formed in the brain and in the periphery, known to block ionotropic glutamate receptors and α7 nicotinic receptors, and to act as a ligand of G protein-coupled GPR35 receptors and human aryl hydrocarbon (AHR) receptors. KYNA seems to modulate a number of mechanisms involved in the pathogenesis of schizophrenia including dopaminergic transmission in mesolimbic and mesocortical areas or glutamatemediated neurotransmission. The kynurenine hypothesis of schizophrenia links the occurrence of positive and negative symptoms of schizophrenia and cognitive impairments characteristic for the disease with the disturbances of kynurenine pathway function. Available data suggest that antipsychotic drugs may restore balance among kynurenine pathway metabolites, and that co-administration of glycine with antipsychotics may reduce extrapyramidal symptoms in patients suffering from schizophrenia. Central level of KYNA may increase in the course of inflammation, which is consistent with the inflammatory hypothesis of schizophrenia. Alterations of immune response and disturbed functioning of kynurenine pathway may lead to disproportion between neuroprotective and neurotoxic mechanisms in the brain. Currently, intense research efforts are focused on the role of kynurenine pathway metabolites in pathogenesis of schizophrenia, their association with the response to antipsychotic treatment, and search for novel medications modulating the function of kynurenine pathway.


Assuntos
Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Ácido Cinurênico/farmacologia , Esquizofrenia/etiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Encéfalo/efeitos dos fármacos , Humanos , Ácido Cinurênico/metabolismo , Antagonistas Nicotínicos/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Receptores Nicotínicos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
14.
Pharmacol Rep ; 66(6): 1134-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443746

RESUMO

BACKGROUND: Diabetes mellitus (DM) is frequently associated with peripheral and central complications and has recently emerged as a risk factor for cognitive impairment and dementia. Kynurenic acid (KYNA), a unique tryptophan derivative, displays pleiotropic effects including blockade of ionotropic glutamate and α7 nicotinic receptors. Here, the influence of experimental diabetes on KYNA synthesis was studied in rat brain. METHODS: DM was induced by i.p. administration of streptozotocin (STZ). Five weeks later, KYNA content and the activity of semi-purified kynurenine aminotransferases (KATs) were measured in frontal cortex, hippocampus and striatum of diabetic and insulin-treated rats, using HPLC-based methods. RESULTS: Hippocampal but not cortical or striatal KYNA concentration was considerably increased during DM, either untreated or treated with insulin (220% and 170% of CTR, respectively). The activity of kynurenine aminotransferase I (KAT I) was not affected by DM in all of the studied structures. KAT II activity was moderately increased in cortex (145% of CTR) and hippocampus (126% of CTR), but not in striatum of diabetic animals. Insulin treatment normalized cortical but not hippocampal KAT II activity. CONCLUSIONS: A novel factor potentially implicated in diabetic hippocampal dysfunction has been identified. Observed increase of KYNA level may stem from the activation of endogenous neuroprotection, however, it may also have negative impact on cognition.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Hipocampo/metabolismo , Ácido Cinurênico/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cognição/fisiologia , Corpo Estriado/metabolismo , Lobo Frontal/metabolismo , Insulina/farmacologia , Ratos , Estreptozocina , Transaminases/metabolismo
15.
J Psychiatr Res ; 47(11): 1815-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012176

RESUMO

Accumulating data suggest a causative link between immune stimulation, disturbed metabolism of tryptophan, and pathogenesis of bipolar disorder and schizophrenia. The goal of this study was to examine the production of kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and the expression of kynurenine pathway enzymes involved in their synthesis and metabolism in cultured skin fibroblasts obtained from patients with bipolar disorder, schizophrenia or from healthy control individuals. The assessment was performed under basal conditions or following treatment with interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, or their combinations, in cells exposed to exogenous kynurenine. In both groups of patients, the baseline production of KYNA and 3-HK was increased, as compared to control subjects. Case-treatment analyses revealed significant interactions between bipolar case status and IL-1ß, IL-6, IFN-γ + TNF-α, or IFN-γ + IL-1ß, as well as between schizophrenia case status and IL-1ß, IFN-γ + TNF-α, or IFN-γ + IL-1ß, in terms of higher 3-HK. Noteworthy, no case-treatment interactions in terms of KYNA production were found. Observed changes did not appear to correlate with the expression of genes encoding kynurenine aminotransferases (KATs), kynureninase (KYNU) or kynurenine-3-monooxygenase (KMO). The single nucleotide polymorphisms (SNPs), rs1053230 and rs2275163, in KMO influenced KYNA levels yet did not explain the case-treatment discrepancies. In conclusion, our present findings indicate the utility of skin-derived fibroblasts for kynurenines research and support the concept of kynurenine pathway alterations in bipolar disorder and schizophrenia. The increase in ratio between neurotoxic 3-HK and neuroinhibitory/neuroprotective KYNA following exposure to cytokines may account for altered neurogenesis and structural abnormalities characteristic for both diseases.


Assuntos
Transtorno Bipolar/patologia , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Cinurenina/análogos & derivados , Esquizofrenia/patologia , Adulto , Transtorno Bipolar/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Ácido Cinurênico , Cinurenina/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais , Adulto Jovem
16.
J Neural Transm (Vienna) ; 119(2): 235-43, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21660485

RESUMO

Altered function of kynurenine pathway has emerged recently as one of the factors contributing to the pathogenesis of depression. Neuroprotective kynurenic acid (KYNA) and neurotoxic 3-hydroxykynurenine (3-HK) are two immediate metabolites of L: -kynurenine. Here, we aimed to assess the hypothesis that antidepressant drugs that may change brain KYNA/3-HK ratio. In primary astroglial cultures, fluoxetine, citalopram, amitriptyline and imipramine (1-10 µM) increased de novo production of KYNA and diminished 3-HK synthesis (24 and 48, but not 2 h). RT-PCR studies revealed that Kat1, Kat2 and kynurenine-3-monooxygenase (Kmo) gene expressions were not altered after 2 h. At 24 h, the expression of Kat1 and Kat2 genes was enhanced by all studied drugs, whereas Kmo expression was diminished by citalopram, fluoxetine and amitriptyline, but not imipramine. After 48 h, the expression of Kat1 and Kat2 was further up-regulated, and Kmo expression was down-regulated by all antidepressants. The ratio KYNA/3-HK was increased by fluoxetine, citalopram, amitriptyline and imipramine in a time-dependent manner-the effect was not observed after 2 h, modest after 24 h and robust after 48 h incubation time. Our findings indicate that the action of antidepressants may involve re-establishing of the beneficial ratio between KYNA and 3-HK. Shift in the kynurenine pathway, observed after prolonged exposure to antidepressant drugs, may partly explain their delayed therapeutic effectiveness.


Assuntos
Antidepressivos/farmacologia , Ácido Cinurênico/metabolismo , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Animais , Animais Recém-Nascidos , Antidepressivos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Ácido Cinurênico/química , Cinurenina/fisiologia , Vias Neurais/química , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos , Ratos Wistar , Estereoisomerismo
17.
J Inflamm (Lond) ; 8: 25, 2011 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21982155

RESUMO

BACKGROUND: The kynurenine pathway (KP) is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP. METHODS: Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN)-γ 200 U/ml and/or tumor necrosis factor (TNF)-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA) were determined by HPLC. RESULTS: At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments. CONCLUSIONS: All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease-related abnormalities in the kynurenine pathway of tryptophan degradation.

18.
Neurotox Res ; 20(1): 40-50, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20838951

RESUMO

Ketone bodies formed during ketogenic diet or non-treated diabetes mellitus may exert neuroprotective and antiepileptic effects. Here, we assessed the influence of ketone body, ß-hydroxybutyrate (BHB) on the brain synthesis of kynurenic acid (KYNA), an endogenous antagonist of glutamatergic and α7-nicotinic receptors. In brain cortical slices and in primary glial cultures, BHB enhanced KYNA production. KT 5270, an inhibitor of protein kinase A, has prevented this action. At hypoglycemia, under pH 7.0 and 7.4, profound (15 mM BHB), but not mild (3 mM) ketosis increased synthesis of KYNA. In paradigm resembling diabetic ketoacidosis in vitro (30 mM glucose, pH 7.0), neither mild nor profound ketosis influenced the production of KYNA. At pH 7.4 and in 30 mM glucose though, both mild and severe ketonemia evoked an increase of KYNA production. The activity of KYNA biosynthetic enzymes, KAT I and KAT II, in cortical homogenate was not altered by BHB (0.05-10.0 mM). However, in cultured glial cells exposed to BHB (10 mM), the activity of KATs increased. This effect was reversed by the co-incubation of cells with KT 5270. Presented data reveal a novel mechanism of action of BHB. Increased synthesis of KYNA in the presence of BHB is most probably mediated by protein kinase A-dependent stimulation of KATs expression/activity leading to an increase of KYNA formation. Ensuing attenuation of the excessive excitatory glutamate-mediated neurotransmission may, at least in part, explain the neuroprotective actions of BHB.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Córtex Cerebral/metabolismo , Corpos Cetônicos/farmacologia , Ácido Cinurênico/metabolismo , Neuroglia/metabolismo , Ácido 3-Hidroxibutírico/antagonistas & inibidores , Animais , Azocinas/farmacologia , Técnicas de Cultura de Células , Córtex Cerebral/efeitos dos fármacos , Corpos Cetônicos/antagonistas & inibidores , Masculino , Neuroglia/efeitos dos fármacos , Ratos , Ratos Wistar , Transaminases/metabolismo
19.
Prog Neuropsychopharmacol Biol Psychiatry ; 33(3): 519-29, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19439240

RESUMO

The central levels of endogenous tryptophan metabolite kynurenic acid (KYNA), an antagonist of N-methyl-d-aspartate (NMDA) and alpha7-nicotinic receptors, affect glutamatergic and dopaminergic neurotransmission. Here, we demonstrate that selective agonists of beta(1)-receptors (xamoterol and denopamine), beta(2)-receptors (formoterol and albuterol), alpha- and beta-receptors (epinephrine), 8pCPT-cAMP and 8-Br-cAMP (analogues of cAMP) increase the production of KYNA in rat brain cortical slices and in mixed glial cultures. Neither betaxolol, beta(1)-adrenergic antagonist, nor timolol, a non-selective beta(1,2)-adrenergic antagonist has influenced synthesis of KYNA in both paradigms. In contrast, KT5720, a selective inhibitor of protein kinase A (PKA), strongly reduced KYNA formation in cortical slices (2-10 microM) and in glial cultures (100 nM). beta-adrenergic antagonists and KT5720 prevented the beta-adrenoceptor agonists-induced increases of KYNA synthesis. In vivo, beta-adrenergic agonist clenbuterol (0.1-1.0 mg/kg) increased the cortical endogenous level of KYNA; the effect was blocked with propranolol (10 mg/kg). beta-adrenoceptors agonists, cAMP analogues and KT5720 did not affect directly the activity of KAT I or KAT II measured in partially purified cortical homogenate. In contrast, the exposure of intact cultured glial cells to pCPT-cAMP, 8-Br-cAMP and formoterol has lead to an enhanced action of KATs. These findings demonstrate that beta-adrenoceptor-mediated enhancement of KYNA production is a cAMP- and PKA-dependent event. PKA activity appears to be an essential signal affecting KYNA formation. Described here novel mechanism regulating KYNA availability may be of a potential importance, considering that various stimuli, among them clinically used drugs, activate cAMP/PKA pathway, and thus could counteract the central deficits of KYNA.


Assuntos
Encéfalo/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Cinurênico/metabolismo , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/fisiologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Carbazóis/farmacologia , Células Cultivadas , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Masculino , Neuroglia/efeitos dos fármacos , Pirróis/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Tionucleotídeos/farmacologia , Transaminases/metabolismo
20.
Pharmacol Rep ; 60(4): 574-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18799828

RESUMO

The effect of a beta(2)-adrenergic agonist, clenbuterol on the production of a glutamate receptor antagonist, kynurenic acid was studied in vitro. Clenbuterol enhanced the production of kynurenic acid in brain cortical slices (0.1-1.0 mM) and in glial cultures (1-50 muM). Timolol, a non-selective beta-adrenergic antagonist prevented this effect. The presented data indicate a novel mechanism of action of beta(2)-adrenoceptor agonists and suggest that an increased formation of the endogenous glutamate receptor antagonist, kynurenic acid could partially contribute to their neuroprotective activity.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Clembuterol/farmacologia , Antagonistas de Aminoácidos Excitatórios/metabolismo , Ácido Cinurênico/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Animais , Células Cultivadas , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...